Bellringer - January 22

Notes

Remember that

$$\frac{d}{dx}(e^x) = e^x$$

Calculate $\frac{dy}{dx}$ for the following:

1.
$$y = 4e^{x}$$

2.
$$y = x^2 e^x$$

3.
$$y^2 = 3e^x$$

Finding the Derivative of e^u

Example (Differentiate $y = e^{x+x^2}$)

- Consider the chain rule, where $u = x + x^2$.
- Then $y = e^u$, and $\frac{dy}{dx} = e^u \frac{du}{dx}$
- Therefore $\frac{dy}{dx} = e^{x+x^2}(1+2x)$

Example (Differentiate
$$y = e^{x^3 + 3x^2}$$
)
$$\frac{dy}{dx} = e^{x^3 + 3x^2} \frac{d}{dx} (x^3 + 3x^2)$$

$$\frac{dy}{dx} = e^{x^3+3x^2}(3x^2+6x)$$

Notes

What if
$$y = a^x$$
, $a \neq e$?

If a > 0 and $a \neq 1$ we can use the properties of logarithms to write a^{x} in terms of e^{x} and then calculate the derivative.

In general, then

$$a^{x} = e^{\ln(a^{x})}$$

$$= e^{x \ln(a)}$$

$$\frac{d}{dx}(a^{x}) = \frac{d}{dx}(e^{x \ln(a)})$$

$$= e^{x \ln(a)} \frac{d}{dx}(x \ln(a))$$

$$= e^{x \ln(a)} (\ln(a))$$

$$= a^{x} \ln a$$

Notes

Example

Example (Differentiate $y = 3^{\cos x}$) $\frac{d}{dx}(3^{\cos x}) = 3^{\cos x} \ln 3 \frac{d}{dx}(\cos x)$ $= 3^{\cos x} \ln 3(-\sin x)$ $= -\sin x 3^{\cos x} \ln 3$

Example (Differentiate $y = 4^{\tan(x)+x^2}$) $\frac{d}{dx}(4^{\tan(x)+x^2}) = 4^{\tan(x)+x^2} \ln 4 \frac{d}{dx}(\tan(x)+x^2)$ $= 4^{\tan(x)+x^2} \ln 4(\sec^2(x)+2x)$

Example

Example (At what point does the tangent line have a slope of 16 if $y = 3^t - 2$?)

Step 1: Find the derivative

$$\frac{d}{dt}(3^t - 2) = 3^t \ln 3$$

Step 2: Solve $3^t \ln 3 = 16$

Rewrite as $3^t \ln 3 - 16 = 0$ and use your calculator.

Step 3: Calculate the point. If t=2.438 then $y=3^{2.438}-2=12.562$

Notes

Notes

Notes