

Notes

Exponential Function Overview

Definition (Exponential Function) Let *a* be a positive real number that is not 1. Then the function

 $f(x) = a^x$

is the exponential function with base a. For the basic exponential function $f(x) = k \cdot a^x + b$, the following hold:

• a > 0

- Domain is $(-\infty,\infty)$
- Range is (b, ∞) if k > 0, $(-\infty, b)$ if k < 0
- *y*-intercept is *k*

If a > 1 the function is increasing, else it is decreasing.
(Assume k > 0. What if k < 0?) (Hint: Consider that 2^{-x} = (¹/₂)^x, and a = ¹/₂ < 1)

Finding Zeros

Definition (Zero)

The zeroes of a function f(x) are the values of x so that f(x) = 0. These are also know as the roots or x-intercepts of the function.

Example (Find the zero for $f(x) = 5 - 2.5^{x}$)

- Graph the function, and set the window size to [-5,5] by [-5,5]
- Select the Zero function (2nd trace 2)
- Select left and right bounds, and a guess.
- Read off the answer: X = 1.7564708 = 1.756

Notes

Notes

Practice Finding Zeros

Notes

Practice Problem

For each of the following functions, use the graphing calculator to find the zero.

- 1. $f(x) = 2^x 5$ X = 2.322
- 2. $f(x) = 3^x 0.5$
- X = -0.631

Notes

Example (Solving for x when $5 = 2.1^{\times}$)

- Graph the functions $y1 = 2.1^{\times}$ and y2 = 5, and set the window size to [-5,5] by [-1,6]
- Select the Intersect function (2nd trace 5)
- Select the first and second functions, and a guess.
- Read off the answer: X = 2.169237 = 2.169 and Y = 5

Practice Solving for x

Notes

Practice Problem

For each of the following functions, use the graphing calculator to solve for x.

- 1. $2 = 1.2^{x}$
- *X* = 3.802
- 2. $0.1 = 3^{x}$ X = -2.096

Calculating Interest

Notes

Definition (Calculating interest)

$$P=P_0(1+\frac{r}{n})^{n}$$

- P0 Principal or original amount
- r Rate of interest, usually expressed as an annual rate
- *n* Number of times interest is compounded
- t Amount of time that interest is paid over
- P Final amount

- Graph $y1 = 1.005^x$ and y2 = 2.4
- Find the point of intersection X = 14.628

Exponential Decay

Example (The half-life of cyanide in the human bloodstream is 1 hour: if Bobby has 5mg of cyanide in her blood after 24 hours, how much cyanide did she ingest originally?)

• A half-life of 1 hour means the rate is 0.50, and the amount is halved 24 times.

• $5 = x(0.5)^{24}$ or $\frac{5}{0.5^{24}} = x$

• X = 83886080 mg or X = 83886.08 grams.

Notes

Homework				
Section 1.3 (page 26 - 27):				
13				
14				
15				
16				
17				
18				
22				
26				
28				
32				

Notes

Notes