

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- What is a line?
- Slope
- Equations of Lines
- Parallel and Perpendicular Lines

What is a Line?

Definition (Mathematical)

A line is a geometric figure formed by a point moving along a fixed direction and the reverse of that fixed direction.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Question

How else can you define a line?

Slope

Definition (Increment)

If a particle moves from point $P_1 = (x_1, y_1)$ to the point $P_2 = (x_2, y_2)$, then the *increments* in its coordinates are $\Delta x = x_2 - x_1$ and $\Delta y = y_2 - y_1$

Definition (Slope)

If P_1 and P_2 are two points on a non vertical line, then the slope $m = \frac{\text{rise}}{\text{run}} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$

Example

Let
$$P_1 = (4, -3)$$
 and $P_2 = (2, 5)$
 $\Delta x = \Delta y =$

Slope

Definition (Increment)

If a particle moves from point $P_1 = (x_1, y_1)$ to the point $P_2 = (x_2, y_2)$, then the *increments* in its coordinates are $\Delta x = x_2 - x_1$ and $\Delta y = y_2 - y_1$

Definition (Slope)

If P_1 and P_2 are two points on a non vertical line, then the slope $m = \frac{\text{rise}}{\text{run}} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$

Example

Let $P_1 = (4, -3)$ and $P_2 = (2, 5)$ $\Delta x = 2 - 4 = -2$ $\Delta y = 5 - (-3) = 8$ Then the slope of the line going through P_1 and P_2 is m =

Slope

Definition (Increment)

If a particle moves from point $P_1 = (x_1, y_1)$ to the point $P_2 = (x_2, y_2)$, then the *increments* in its coordinates are $\Delta x = x_2 - x_1$ and $\Delta y = y_2 - y_1$

Definition (Slope)

If P_1 and P_2 are two points on a non vertical line, then the slope $m = \frac{\text{rise}}{\text{run}} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$

Example

Let
$$P_1 = (4, -3)$$
 and $P_2 = (2, 5)$
 $\Delta x = 2 - 4 = -2$ $\Delta y = 5 - (-3) = 8$
Then the slope of the line going through P_1 and P_2 is
 $m = \frac{\Delta y}{\Delta x} = \frac{8}{-2} = -4$

Definition (Point-Slope Equation)

The equation $y = m(x - x_1) + y_1$ is the point-slope equation of the line through the point (x_1, y_1) with slope m.

Definition (Slope-Intercept Equation)

The equation y = mx + b is the slope-intercept equation of the line through the point (0, b) with slope m.

Example

Write the equation of the line that passes through (5, -3) and has slope $-\frac{4}{5}$: y =

Definition (Point-Slope Equation)

The equation $y = m(x - x_1) + y_1$ is the point-slope equation of the line through the point (x_1, y_1) with slope m.

Definition (Slope-Intercept Equation)

The equation y = mx + b is the slope-intercept equation of the line through the point (0, b) with slope m.

Example

Write the equation of the line that passes through (5, -3) and has slope $-\frac{4}{5}$: $y = -\frac{4}{5}(x-5) + (-3) =$

Definition (Point-Slope Equation)

The equation $y = m(x - x_1) + y_1$ is the point-slope equation of the line through the point (x_1, y_1) with slope m.

Definition (Slope-Intercept Equation)

The equation y = mx + b is the slope-intercept equation of the line through the point (0, b) with slope m.

Example

Write the equation of the line that passes through (5, -3) and has slope $-\frac{4}{5}$: $y = -\frac{4}{5}(x-5) + (-3) = -\frac{4x}{5} + (\frac{4}{5})5 - 3 =$

Definition (Point-Slope Equation)

The equation $y = m(x - x_1) + y_1$ is the point-slope equation of the line through the point (x_1, y_1) with slope m.

Definition (Slope-Intercept Equation)

The equation y = mx + b is the slope-intercept equation of the line through the point (0, b) with slope m.

Example

Write the equation of the line that passes through (5, -3) and has slope $-\frac{4}{5}$: $y = -\frac{4}{5}(x-5) + (-3) = -\frac{4x}{5} + (\frac{4}{5})5 - 3 = -\frac{4x}{5} + 1$

Horizontal and Vertical Lines

Definition (Horizontal Lines)

A horizontal line going through the point $P_1 = (x_1, y_1)$ has a slope m = 0, since $\Delta y = 0$. Its equation is $y = y_1$.

Definition (Vertical Lines)

A vertical line going through the point $P_1 = (x_1, y_1)$ has an undefined slope, since $\Delta x = 0$. Its equation is $x = x_1$.

Example

Write the equation of the horizontal and vertical lines that pass through (3, -5)Horizontal: y =

Horizontal and Vertical Lines

Definition (Horizontal Lines)

A horizontal line going through the point $P_1 = (x_1, y_1)$ has a slope m = 0, since $\Delta y = 0$. Its equation is $y = y_1$.

Definition (Vertical Lines)

A vertical line going through the point $P_1 = (x_1, y_1)$ has an undefined slope, since $\Delta x = 0$. Its equation is $x = x_1$.

Example

Write the equation of the horizontal and vertical lines that pass through (3, -5)Horizontal: y = -5

Horizontal and Vertical Lines

Definition (Horizontal Lines)

A horizontal line going through the point $P_1 = (x_1, y_1)$ has a slope m = 0, since $\Delta y = 0$. Its equation is $y = y_1$.

Definition (Vertical Lines)

A vertical line going through the point $P_1 = (x_1, y_1)$ has an undefined slope, since $\Delta x = 0$. Its equation is $x = x_1$.

Example

Write the equation of the horizontal and vertical lines that pass through (3, -5)Horizontal: y = -5Vertical: x =

Horizontal and Vertical Lines

Definition (Horizontal Lines)

A horizontal line going through the point $P_1 = (x_1, y_1)$ has a slope m = 0, since $\Delta y = 0$. Its equation is $y = y_1$.

Definition (Vertical Lines)

A vertical line going through the point $P_1 = (x_1, y_1)$ has an undefined slope, since $\Delta x = 0$. Its equation is $x = x_1$.

Example

Write the equation of the horizontal and vertical lines that pass through (3, -5)Horizontal: y = -5Vertical: x = 3

Note that horizontal and vertical lines are always perpendicular.

Parallel and Perpendicular Lines

Definition (Parallel)

Two lines are *parallel* if they have the same slope.

Definition (Perpendicular)

Two lines L_1 and L_2 , whose slopes are m_1 and m_2 are perpendicular if $m_1 = -\frac{1}{m_2}$.

Example

Given the following lines, find pairs of parallel and perpendicular lines.

1.
$$y = 3x + 2$$
4. $y = 3x - 4$ 2. $x = 6$ 5. $y = -3x + 5$ 3. $y = \frac{x}{3} - 14$ 6. $y = 2$

Homework

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Section 1.1 exercises (page 9) (12 problems):

2	
4	
10	а
	b
12	а
	b
14	
20	
32	а
	b
34	а
	b