1 Properties of Logarithms

There is a logical symmetry between the properties of exponential and logarithmic functions, since logarithmic functions are the inverse of exponential functions.

	Exponential	Logarithmic
	$y = b^x$	$r = \log u$
	y = 0	$x = \log_b y$
Product	$b^m b^n = b^{m+n}$	$\log_b mn = \log_b m + \log_b n$
	hm 1 m m	1
Quotient	$\frac{b^m}{b^n} = b^{m-n}$	$\log_b \frac{m}{n} = \log_b m - \log_b n$
Power	$(b^m)^n = b^{mn}$	$\log_b m^n = n \log_b m$
Change of Base		$\log_b m = \frac{\log_c m}{\log_c b}$

2 Simplifying Logarithms - Examples

Simplifying logarithms usually involves rewriting the expression so that there is one logarithm remaining.

1.

$$\log_3 7 + \log_3 5 = \log_3 35$$

3.

$$\log_7 81 - \log_7 27 = \log_7 \frac{81}{27}$$
$$= \log_7 3$$

2.

$$2\log_4 x + \frac{1}{2}\log_4 16 = \log_4 x^2 + \log_4 16^{\frac{1}{2}}$$
$$= \log_4 x^2 + \log_4 4$$
$$= \log_4 4x^2$$

4.

$$3 \log_{14} x - 2 \log_{14} x = \log_{14} x^3 - \log_{14} x^2$$

$$= \log_{14} \frac{x^3}{x^2}$$

$$= \log_{14} x$$

3 Practice Problems

Rewrite each of these expressions as a single logarithm, and then convert to exponential form.

1.
$$\log_2 x + \log_2 4 =$$

7.
$$\log_2 8 - \log_2 4 =$$

2.
$$\log_2 7 + 3\log_2 4 =$$

$$8. \log_4 256 - 3\log_4 4 =$$

3.
$$\log_3 5 + 2\log_3 x =$$

9.
$$\log_3 5 - 2\log_3 x =$$

$$4. \log_b \sqrt{y} + 3\log_b \sqrt{y} =$$

10.
$$\log_b \sqrt{y} - \log_b \sqrt{y} =$$

5.
$$\log_{15} y + \log_{15} x + \log_{15} 4 =$$

11.
$$\log_{15} y - \log_{15} x + \log_{15} 4 =$$

6.
$$\log_a 7 + 2\log_a 7 + \frac{1}{3}\log_a 7 =$$

12.
$$\log_a 7 + 2\log_a 7 - \frac{1}{3}\log_a 7 =$$